Constraint Optimization Approach to Context Based Word Selection

نویسندگان

  • Jun Matsuno
  • Toru Ishida
چکیده

Consistent word selection in machine translation is currently realized by resolving word sense ambiguity through the context of a single sentence or neighboring sentences. However, consistent word selection over the whole article has yet to be achieved. Consistency over the whole article is extremely important when applying machine translation to collectively developed documents like Wikipedia. In this paper, we propose to consider constraints between words in the whole article based on their semantic relatedness and contextual distance. The proposed method is successfully implemented in both statistical and rule-based translators. We evaluate those systems by translating 100 articles in the EnglishWikipedia into Japanese. The results show that the ratio of appropriate word selection for common nouns increased to around 75% with our method, while it was around 55% without our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis

In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

GAMBL, genetic algorithm optimization of memory-based WSD

GAMBL is a word expert approach to WSD in which each word expert is trained using memorybased learning. Joint feature selection and algorithm parameter optimization are achieved with a genetic algorithm (GA). We use a cascaded classifier approach in which the GA optimizes local context features and the output of a separate keyword classifier (rather than also optimizing the keyword features tog...

متن کامل

A Declarative Approach to Modeling and Solving the View Selection Problem. (Une approche déclarative pour la modélisation et la résolution du problème de la sélection de vues à matérialiser)

View selection is important in many data-intensive systems e.g., commercial database and data warehousing systems to improve query performance. View selection can be de ned as the process of selecting a set of views to be materialized in order to optimize query evaluation. To support this process, di erent related issues have to be considered. Whenever a data source is changed, the materialized...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011